首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5671篇
  免费   167篇
  国内免费   142篇
电工技术   114篇
技术理论   2篇
综合类   270篇
化学工业   586篇
金属工艺   551篇
机械仪表   239篇
建筑科学   478篇
矿业工程   268篇
能源动力   190篇
轻工业   205篇
水利工程   86篇
石油天然气   89篇
武器工业   10篇
无线电   268篇
一般工业技术   471篇
冶金工业   1549篇
原子能技术   68篇
自动化技术   536篇
  2024年   6篇
  2023年   216篇
  2022年   296篇
  2021年   317篇
  2020年   316篇
  2019年   234篇
  2018年   244篇
  2017年   68篇
  2016年   97篇
  2015年   85篇
  2014年   240篇
  2013年   241篇
  2012年   208篇
  2011年   333篇
  2010年   237篇
  2009年   252篇
  2008年   223篇
  2007年   243篇
  2006年   214篇
  2005年   198篇
  2004年   178篇
  2003年   195篇
  2002年   146篇
  2001年   117篇
  2000年   108篇
  1999年   209篇
  1998年   139篇
  1997年   147篇
  1996年   101篇
  1995年   67篇
  1994年   72篇
  1993年   68篇
  1992年   40篇
  1991年   38篇
  1990年   24篇
  1989年   16篇
  1988年   10篇
  1987年   8篇
  1986年   8篇
  1985年   1篇
  1984年   5篇
  1983年   11篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有5980条查询结果,搜索用时 15 毫秒
81.
Rare earth oxide promoted transition metal composite catalyst Eu2O3–Cu/NC with outstanding oxygen reduction reaction (ORR) performance, is constructed by hydrothermal and subsequent high-temperature calcination, considering replacing Pt/C. This synthesis method yields Eu2O3–Cu nanoparticles with uniform distribution, improved oxygen vacancies and increased content of N-doping. And the strong synergistic effect was created between promoter Eu2O3 and chief Cu. In addition, the accommodate adsorption and transfer of O species endow Eu2O3–Cu/NC the improved ORR activity than Eu2O3/NC and Cu/NC. Meanwhile, the stability of Eu2O3–Cu/NC is also strengthened compared to Cu/NC on account of the interaction of active sites, and the H2O2 yield of Eu2O3–Cu/NC is very low. For practical application, a rechargeable Zn-air battery with an air cathode of Eu2O3–Cu/NC displays a larger power density, excellent charge-discharge cycle stability and good rate capability. The designed composite shows potential application prospects in the fields of energy conversion.  相似文献   
82.
The objective of this study was to identify what competencies are identified in the literature as necessary for Industry 4.0 by conducting a survey of the literature and a scientific mapping of the evolution of the issues related to the qualification of professionals for Industry 4.0 and possible paths for research and education. A search was conducted on the Scopus, Web of Science and Science Direct databases for the interval from 2010 to 2018. This systematic review revealed topics and authors currently specialized in the field and allowed mapping the field of study. The identification of journals and keywords useful in future studies was also an object of this study. SciMAT software was used for the systematic literature review. The results are highlighted by the set of competencies (knowledge and skills) that must be developed in professional education to accompany the new industrial revolution, as well as the importance of integrating efforts by companies, governments and universities. These efforts should focus on creating “learning factories”, which are understood to be environments that provide practical experiences to these professionals, preparing them in the best way possible for the requirements of Industry 4.0. This conceptual map showed that the main competencies needed include skills: (leadership, strategic vision of knowledge, self-organization, giving and receiving feedback, pro-activity, creativity, problem solving, interdisciplinarity, teamwork, collaborative work, initiative, communication, innovation, adaptability, flexibility and self-management) and knowledge of contemporary fields (information and communication technology, algorithms, automation, software development and security, data analysis, general systems theory and sustainable development theory).  相似文献   
83.
A series of Na5Y(MoO4)4-yAy:Dy3+ (A = WO42?, VO43?; y = 0–0.05) phosphors were synthesized by the combustion method. Some of the MoO42? sites were occupied by WO42? and VO43? anions, which enhanced the luminescence property of Dy3+-doped Na5Y(MoO4)4. XRD results show that the crystal structures of the samples were consistent with the standard Na5Y(MoO4)4 phase. Under excitation at 352 nm, the Na5Y(MoO4)4-yAy:Dy3+ phosphors exhibited a characteristic blue emission at 485 nm and a yellow emission at 577 nm, which originated from the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. White light can be achieved by combining these blue and yellow emissions. After replacing MoO42? with WO42? and VO43? anions in Na5Y(MoO4)4:Dy3+, the luminescence intensity of Dy3+ was significantly improved due to the crystal field effect. The results indicate that Na5Y(MoO4)3.97(WO4)0.03:Dy3+ and Na5Y(MoO4)3.97(VO4)0.03:Dy3+ phosphors have good prospects for application in n-UV-excited w-LEDs.  相似文献   
84.
《Ceramics International》2021,47(24):34721-34731
A series of Sr9Y(PO4)7:Eu3+ and Sr9Y(PO4)7:Eu3+, Gd3+ red-emitting phosphors were prepared via a high-temperature solid-state method, Gd3+ ion was co-doped in Sr9Y(PO4)7:Eu3+ as sensitizer to enhance the luminescence property. The X-ray diffraction results verify that the structure of the as-prepared samples is consistent with the standard Sr9Y(PO4)7 phase. All the Sr9Y(PO4)7:Eu3+ samples show both characteristic emission peaks at 594 nm and 614 nm under near-ultraviolet excitation of 394 nm. The co-doping of Gd3+ significantly improves the luminescence intensity of the Sr9Y(PO4)7:Eu3+ phosphors due to the crystal field environment effect and energy transfer of Gd3+→Eu3+ caused by the introduction of Gd3+, especially Sr9Y(PO4)7:0.11Eu3+, 0.05Gd3+, which emission intensity is higher than that of Sr9Y(PO4)7:0.11Eu3+ by 1.21 times. The color purity and lifetime of Sr9Y(PO4)7:0.11Eu3+, 0.05Gd3+ phosphor are 88.26% and 3.7615 ms, respectively. A w-LED device was packaged via coating the as-prepared phosphor on n-UV chip of 395 nm with commercial phosphors. These results exhibit that the Sr9Y(PO4)7:Eu3+, Gd3+ red-emitting phosphor can be used as a red component in the w-LEDs application.  相似文献   
85.
Finding a low-cost, efficient, stable, and workable electrode for the production of hydrogen based on the hydrogen evolution reaction (HER) is particularly critical. At present, the use of Pt/C electrodes is under development, but the expensive cost hinders its wide application in the HER field. Herein, a novel porous Ni-Cu-Ti-La2O3 cathode with a porosity of 29.07% was proved to be an excellent substitute for the HER, which was fabricated by vacuum sintering based on powder metallurgy. The hydrogen evolution efficiency is superior to that of commercial 20% Pt/C under pH = 14.1 condition (2.67 mol/L KOH). The HER activity is also close to commercial 20% Pt/C under pH = 0.1 (1 mol/L HCl) and pH = 8.1 (3.34% simulated seawater) conditions and exceeds it after reaching a high potential. Meanwhile, it can achieve good HER stability within 48 h and maintain its HER activity after 1000 continuous cycle electrolysis.  相似文献   
86.
《Ceramics International》2022,48(18):26400-26407
The high-entropy rare earth zirconate (La1/5Nd1/5Sm1/5Gd1/5Yb1/5)2Zr2O7 porous ceramics ((5RE1/5)2Zr2O7 PCs) were prepared using a foam-gel casting-freeze drying method combined with segmented calcination process. The results of SEM, TEM, and XRD analyses of the (5RE1/5)2Zr2O7 PCs indicated the formation of a defective fluorite crystal structure, with the rare earth elements homogeneously distributed. Meanwhile, the as-prepared (5RE1/5)2Zr2O7 PCs exhibited high porosity, low bulk density, low thermal conductivity, and relatively high compressive strength. Moreover, the high-temperature thermal conductivity of the samples was evaluated, and the results showed that the (5RE1/5)2Zr2O7 PCs maintain a thermal conductivity of 0.150 ± 0.002 W m?1 K?1 even at 1000 °C. The strategy used in this paper can be extended to the synthesis of other high-entropy porous ceramics with high porosity and low thermal conductivity, which is suitable for applications as thermal insulation materials.  相似文献   
87.
Numerical simulations are performed to investigate the real gas effects on shock/expansion fan interaction. Initial perfect gas simulations at low enthalpy capture the flow structures efficiently and outcomes are found to have excellent agreement with the analytical calculations. Furthermore, the simulations with the real gas solver for different enthalpies showed that the variation in enthalpy significantly changes the flow structures. It is observed that an increase in enthalpy leads to a decrease and increase in the postshock and postexpansion fan Mach numbers, respectively. Another important observation is the decrement in the peak pressure ratio with an increment in the enthalpy. These effects are noted to be more pronounced for Mars's environment due to the higher dependency of specific heat on temperature.  相似文献   
88.
Compaction of earth fill is a very important stage of construction projects. Degree of compaction is defined by relative compaction. The relative compaction of a compacted earth fill is calculated by dividing the dry unit weight obtained from in situ tests by-into the maximum dry unit weight obtained from laboratory compaction tests. This rate represents compaction quality in the field. Numerous test methods such as sand cone, rubber balloon, nuclear measurements, etc., are available to determine the maximum dry unit weight of soils in the field. It is well known that these methods have disadvantages as well as advantages. This study focused on estimation of dry unit weight of soils depending on water contents and P-wave velocities of compacted soils. The multi-layer perceptron (MLP) neural networks and general linear model (GLM) were used in this study to estimate the dry unit weight of different types of soils. Results of the MLP neural networks were compared with the GLM results. Based on the comparisons, it is found that the MLP generally gives better dry unit weight estimates than the GLM technique. The laboratory experiments and modeling studies showed that a new method for compaction control can be developed depending on P-wave velocity to estimate of the dry unit weight of compacted soils.  相似文献   
89.
In this study, we investigated the effects of single-stage ageing (SSA), two-stage ageing (TSA), 2% pre-strain + single-stage ageing (P2%SSA) and 2% pre-strain + two-stage ageing (P2%TSA) on the mechanical properties of as-extruded Mg–8Gd–3Y–0.5Ag–0.5Zr alloy (E alloy). Compared with the SSA treatment, the TSA treatment increased the number density of $\beta ^{\prime}$ phase. The P2%SSA and P2%TSA treatments generated the $\gamma ^{\prime}$ phase and chain-like precipitates in addition to the $\beta ^{\prime}$ phase. The contributions of these ageing treatments to the alloy strengthening can be ranked as P2%TSA > P2%SSA > TSA > SSA, because the increments in the tensile yield strength were estimated to be 199 MPa > 148 MPa > 144 MPa > 110 MPa. Different from the traditional strengthening of $\beta ^{\prime}$ phase in the E + SSA and E + TSA alloys, the composite precipitates comprising the $\beta ^{\prime}$ phase, $\gamma ^{\prime}$ phase and chain-like precipitates in the E + P2%SSA and E + P2%TSA alloys provided better combined strengthening effect. The $\beta ^{\prime}$ phase was still dominated in the strengthening effect of the composite precipitates. Owing to the higher number density of $\beta ^{\prime}$ phase in the composite precipitates, the E + P2%TSA alloy exhibited the better mechanical performance as compared with the E + P2%SSA alloy. Finally, the E + P2%TSA alloy had the ultimate tensile strength of 452 MPa, the tensile yield strength of 401 MPa and elongation to failure of 3.3%.  相似文献   
90.
《Soils and Foundations》2019,59(6):2206-2219
Soil-cement columns are widely used to improve soft ground, and the bearing capacity of the formed composite ground is a key design parameter. The currently employed design method was developed for composite grounds under rigid footings, whilst the bearing capacity behavior of composite grounds under earth fills with different degrees of stiffness has rarely been investigated. Hence, the present study attempts to fill this gap. In this investigation, 1-g laboratory model tests are conducted to compare the bearing capacity behavior of composite grounds under a rigid footing and under embankment fill, based on which a numerical model that can capture the strain-softening behavior of soil-cement columns is established. The calibrated numerical model is further employed to perform 144 analyses. The results indicate that the failure mode of composite grounds differs for different types of earth fills: soil failure occurs prior to column failure under soft clay and dredged slurry, whereas column failure is the primary failure mode for composite grounds under embankment fill. This difference in failure mode of composite grounds can be explained using soil arching theories. For different failure modes, different bearing capacity efficiency factors should be used in design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号